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Abstract. Predicting species distributions at scales of regions to continents is often necessary, as large-

scale phenomena influence the distributions of spatially structured populations. Land use and land cover

are important large-scale drivers of species distributions, and landscapes are known to create species

occurrence thresholds, where small changes in a landscape characteristic results in abrupt changes in

occurrence. The value of the landscape characteristic at which this change occurs is referred to as a change

point. We present a hierarchical Bayesian threshold model (HBTM) that allows for estimating spatially

varying parameters, including change points. Our model also allows for modeling estimated parameters in

an effort to understand large-scale drivers of variability in land use and land cover on species occurrence

thresholds. We use range-wide detection/nondetection data for the eastern brook trout (Salvelinus

fontinalis), a stream-dwelling salmonid, to illustrate our HBTM for estimating and modeling spatially

varying threshold parameters in species occurrence. We parameterized the model for investigating

thresholds in landscape predictor variables that are measured as proportions, and which are therefore

restricted to values between 0 and 1. Our HBTM estimated spatially varying thresholds in brook trout

occurrence for both the proportion agricultural and urban land uses. There was relatively little spatial

variation in change point estimates, although there was spatial variability in the overall shape of the

threshold response and associated uncertainty. In addition, regional mean stream water temperature was

correlated to the change point parameters for the proportion of urban land use, with the change point value

increasing with increasing mean stream water temperature. We present a framework for quantify

macrosystem variability in spatially varying threshold model parameters in relation to important large-

scale drivers such as land use and land cover. Although the model presented is a logistic HBTM, it can

easily be extended to accommodate other statistical distributions for modeling species richness or

abundance.
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INTRODUCTION

Ecological patterns and processes affecting

species distributions and richness are increasing-

ly reported at larger scales than historically

investigated. This partly reflects the fact that

many stressors, such as land use and climate

change, can affect a species over much, if not all,
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of its range. Although small-scale studies (e.g.,
site level, such as a stream or forest catchment)
provide the groundwork for ecological inference,
appropriate scaling up of ecological findings to a
macrosystems level (e.g., regions to continents;
Heffernan et al. 2014) is becoming critical toward
the development of a broad understanding of
complex and often unseen ecological phenome-
na. Furthermore, as large-scale ecological condi-
tions present differently to society—such as
negatively through droughts and sea-level rise,
or positively through ecosystem services—an
increased value is being placed on the ability to
predict large-scale biological distributions, eco-
logical processes, and the outcomes of both (Levy
et al. 2014).

Landscape characteristics, such as land use
and land cover, are often a primary focus of
large-scale investigations into species distribu-
tions and associated modeling efforts for several
reasons: (1) many species distributions are tightly
linked to local and regional landscape properties
because landscape-scale processes can affect the
survival and dispersal of populations (Allan
2004); (2) land use and land cover are affected
by natural processes (e.g., insect infestation,
wildfire) and anthropogenic activities (e.g., de-
forestation, climate change; Gevrey et al. 2009),
and thus they have the potential to vary spatially
and temporally; and (3) these data are readily
available at multiple spatial and temporal scales.
Because many individual species and the diver-
sity of species in a region interact in complex
ways with local and regional landscape proper-
ties (Mackey and Lindenmayer 2001), species
distributions are not equally likely across land-
scapes. Often a threshold, an abrupt change in a
state variable (e.g., occurrence or abundance),
occurs along a narrow gradient of a landscape
driver (Qian 2012). The mathematical value at
which the response change takes places is
referred to as a change point.

Threshold responses to landscapes have been
identified for a variety of taxa and biodiversity.
For example, thresholds have been identified for
songbird and forest bird community occurrence
in relation to landscape structure and amount of
broadleaf forests, respectively (Betts et al. 2007,
2010). Reunanen et al. (2004) determined a
landscape threshold for the occurrence of the
Siberian flying squirrel (Pteromys volans), and

Estavillo et al. (2013) reported a biodiversity
threshold of Atlantic forest small mammal
biodiversity in response to the amount of forest
cover. Thresholds in aquatic systems are also
evident. Wagner et al. (2013) observed a steep
decline in occurrence probability for eastern
brook trout (Salvelinus fontinalis) at 5–10% im-
pervious surface in upstream network catch-
ments, and Thomson et al. (2010) detected
temporal change points in abundance of pelagic
estuarine species through examination of water
quality over 40 years.

Because landscape thresholds likely exist for a
variety of taxa, approaches for estimating land-
scape thresholds have recently evolved from
conceptual models (Suding and Hobbs 2009) to
more quantitative approaches (Brenden et al.
2008, Jones et al. 2011, Qian 2012). However,
commonly used non-hierarchical threshold mod-
els (e.g., piecewise regression, nonparametric
deviance reduction models; Brenden et al. 2008)
estimate a single change point for any given
dataset (i.e., a specific region of interest), which
may not be appropriate if thresholds vary
spatially in response to environmental gradients,
such as climate or geological setting. One way to
attempt to address this with traditional non-
hierarchical methods would be to subset the data
into subregions and estimate subregion-specific
change points. This can be problematic, however,
because subsetting the data may result in too few
observations to estimate a change point, and if
they are estimable the uncertainty around the
estimate may be large. Thus, the use of tradi-
tional methods may be inappropriate for exam-
ining spatially varying thresholds across a
species range. In addition, these traditional
methods do not allow for the ability to model
spatially varying parameters, such as slopes and
change points, in an attempt to elucidate large-
scale patterns and drivers of these parameters.
This ability to model spatially varying parame-
ters is an important component for both species
distributional and macrosystem investigations,
and may allow for the detection of cross-scale
interactions that occur when the state variable
(e.g., species occurrence) and drivers operate at
different spatial scales (Soranno et al. 2014).

We present a newly developed hierarchical
Bayesian threshold model that allows for the
estimation and modeling of spatially varying
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parameters within a macrosystem context. Al-
though we illustrate the ability to model spatially
varying parameters, the use of our hierarchical
modeling framework is applicable regardless of
the amount of spatial variability that may be
present in parameters. We use brook trout, a
coldwater fish species native to eastern North
America, as a study organism to illustrate
estimating spatially varying landscape thresh-
olds in occurrence in relation to land use and
land cover. However, our model can easily be
extended to accommodate other state variables
such as abundance or species richness. Simulta-
neously, we also model spatially varying param-
eter estimates (including change point estimates)
as a function of mean regional stream water
temperature to illustrate the integration of larger-
scale predictor variables in an attempt to identify
drivers of large-scale patterns and processes
affecting species distributions.

METHODS

Case study dataset
We used brook trout occurrence data from

streams located within the species native range
across the eastern USA. Data were compiled
through direct contact with state agencies and by
downloading data directly from the Multistate
Aquatic Resources Information System (MARIS)
website (http://www.marisdata.org). Brook trout
detection/nondetection data were compiled and
sampling locations were linked to the National
Hydrography Dataset Plus Version 1.0
(NHDPlus) dataset, which served as the base
spatial unit for our analysis. The resulting dataset
had n ¼ 7798 stream reaches with brook trout
detection/nondetection observations. The data
were subsetted to include only those network
catchments (the entire upstream catchment) with
areas smaller than 125 km2, which corresponds to
headwater streams and habitats suitable to brook
trout. We chose to use Ecological Drainage Units
(EDUs) as a regionalization framework based on
Cheruvelil et al. (2013), who determined that
EDUs outperformed other regionalizations for
grouping similar aquatic ecosystems. EDUs are
also a natural choice for a regionalization when
examining stream ecosystems because they are
watershed-based units that share common phys-
iography, climate, and connectivity (Higgins et

al. 2005). Within our study region there were 41
EDUs (Fig. 1).

Model performance
Although the primary purpose of our analysis

was to gain an understanding of species-land-
scape relationships, and not to build a model that
maximized predictive performance (Kuhn and
Johnson 2013), we chose to randomly withhold
10% of observations from each EDU with .10
observations for model validation. This resulted
in a validation dataset (n¼ 777 observations, n¼
34 EDUs) and a dataset used to fit the models (n
¼ 7021). To evaluate predictive ability we
calculated the posterior distribution of receiver
operating characteristics area under the curve
(AUC). AUC provides a useful measure of
performance relative to chance and ranges from
0 to 1. A value of 0.5 indicates that the model
performs no better than a random guess, while a
value of 1.0 implies perfect prediction. We
calculated AUC to evaluate the model’s ability
to correctly predict locations that were occupied
by brook trout for both the validation dataset and
the dataset used to fit the models.

Predictor variables
We chose to focus on two landscape predictors

of brook trout occurrence that have been previ-
ously shown (Stranko et al. 2008, Wagner et al.
2013) to be important landscape characteristics
influencing their distribution and are likely to
show threshold effects on occurrence: the pro-
portion of agricultural and urban land use in the
upstream network catchment (correlation be-
tween agricultural and urban land use r ¼ 0.07).
We chose not to report the effects of forested land
cover in the network catchment on brook trout
occurrence because the proportion of forest cover
was correlated with both the proportion of
agricultural and urban land use (correlation
between agricultural land use and forest land
cover r ¼�0.78; correlation between urban land
use and forest land cover r ¼�0.55). Landscape
predictors were obtained from the National Land
Cover Database (U.S. Geological Survey 2008)
and summarized within the upstream network
catchment for each stream reach following Essel-
man et al. (2011).

Because water temperature is a key determi-
nant of habitat suitability for brook trout
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regionally (MacCrimmon et al. 1971), we used
mean stream water temperature as an EDU-level
predictor to model estimated threshold model
parameters in the context of identifying large-
scale patterns. Specifically, we used predicted
maximum 30-day mean stream water tempera-
ture from May through October (hereafter
referred to as mean water temperature) from a
neural network ensemble model (DeWeber and
Wagner 2014) developed to predict mean daily
water temperatures throughout the study region
(DeWeber and Wagner, in press). EDU mean
stream water temperature was summarized from
reach-level predictions. Because brook trout is a
cold-water species that is sensitive to landscape
alteration, we predicted that change points and
post-change point slopes (or the difference in
slopes pre- and post-change point) would vary
regionally capturing a moderating effect of
stream water temperature at more northern

latitudes (correlation between predicted mean
EDU stream water temperature and EDU mid-
point latitude r ¼ �0.73). For example, we
predicted an overall negative effect for both the
proportion of agricultural and urban land uses,
where brook trout occurrence would decrease
rapidly at low levels of these land uses, and then
at a change point the decline would be more
gradual. We expected the change point to be at
greater proportions of agricultural and urban
land use and the post-change point slope to be
less steep as you decreased mean EDU stream
water temperatures, reflecting a moderating
effect of temperature on anthropogenic influenc-
es to thermal habitat.

Hierarchical Bayesian threshold model
We extend a logistic threshold model (Jones et

al. 2011) to a hierarchical form where all
parameters are allowed to vary according to a

Fig. 1. Map of study region and 41 ecological drainage units (EDUs; labeled 1–41) which contained 7798

sampled stream reaches describing detection/nondetection of eastern brook trout. Shading of EDUs represents

the number of streams sampled for brook trout within the EDU. EDU numbers presented here are consistent

throughout the study. Note: EDU 25 is within the brook trout range, but contained no streams meeting our

network catchment criteria, and was thus excluded from analyses.
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pre-specified spatial unit. For our case study we
chose to use a hockey stick model based on brook
trout ecology (i.e., they require high water
quality habitats and are thermally sensitive)
where we predicted a sudden change in the
relationship between occurrence probability and
land use types, and because other studies (e.g.,
Stranko et al. 2008) have illustrated a threshold
relationship between brook trout populations
and landscape characteristics such as developed
land use. In addition to our prediction, and
evidence from the literature, that we would
expect a sudden change point (i.e., that the use
of a hockey stick model would be appropriate),
we also examined the posterior distributions of
the change points to assess the existence of a
change point (Qian 2014). We would expect
relatively narrow posterior distributions if
change points do in fact exist. However, depend-
ing on the species and landscape setting of
interest, other statistical change point models
(e.g., disjointed broken stick, step function) could
be used and parameterized similarly to what is
described below.

In this study, all parameters were allowed to
vary among EDUs. Our modeling approach was
first to fit a model that did not include an EDU-
level predictor (i.e., was unconditional at level 2
of the model). This allowed for the quantification
of among-EDU variation in threshold responses.
We then fitted models that included the EDU-
level predictor in an attempt to explain observed
variation in model parameters. This model is
parameterized for investigating thresholds in
landscape predictor variables that are measured
as proportions (i.e., catchment land use and land
cover), and therefore restricted to values between
0 and 1. The model provides estimates of the
population-average change point (a change point
across all data and all EDUs) and EDU-specific
change points. In addition, all EDU-specific
parameters can be examined (simultaneously
modeled) in an attempt to identify large-scale
patterns and processes. The general form of the
hierarchical threshold model is as follows:

yi ; BernoulliðwiÞ; for i ¼ 1; . . . ; n ð1Þ

logitðwiÞ ¼ aj½i� þ bj½i�xi þ dj½i�ðxi � /j½i�Þþ ð2Þ

logðajÞ þ C
logðbjÞ þ C
logðdjÞ þ C

logitð/jÞ

0
BB@

1
CCA; MVNðl;RÞ; for j ¼ 1; . . . J ð3Þ

l ¼ ða ; b ; d̄;/ Þ ð4Þ

where the logit-probability of occurrence is
modeled with group-specific, spatially varying
intercepts (a j), regression slopes prior to the
change point (b j), change in regression slopes
after the change point (d j), and change points
(/ j). The notation j[i] indexes EDU j for site
(observation) i. The final term in Eq. 2
ðxi � /j½i�Þþis equal to (xi – /j[i]) if xi . /j, and 0
otherwise.

We modeled the parameters aj, bj, and dj on the
log scale and /j on the logit scale. Because of
numerical instability during estimation a loga-
rithmic-transformation was used to rescale pa-
rameters to similar magnitudes, which greatly
improved convergence and efficiency of the
MCMC sampling (Kimura 2008). As a result of
the log-transformation aj, bj, and dj were con-
strained to be positive during estimation; how-
ever, in some cases one or more of these
parameters may be negative. Thus, ãj ¼ aj þ C,
b̃j ¼ bj þ C and d̃j ¼ dj þ C were actually esti-
mated. The bias of C was subtracted when
converting parameters to the original scale such
that, for example, âj ¼ e

^̃aj � C. Thus, a constant C
(usually 10) was added to aj, bj, and dj to ensure
that negative values were possible, as necessary
(i.e., if possible parameter space did not include
negative values then a constant was not neces-
sary). The magnitude of the added constant was
determined from preliminary model fits and the
models were not sensitive to the value chosen for
C as long as C was large enough to encompass
the possible parameter space. Although this is
somewhat an unconventional parameterization,
it was done purely to improve numerical stability
and results of this parameterization were nearly
identical to a model fit where parameters were
modeled on their original scale, which was
possible in a preliminary analysis during model
development. We also modeled the logit of /j to
ensure that estimates of change points for land
use and land cover predictors were restricted to
be between 0 and 1, and to ensure a plausible
parameter space for coefficients estimated to
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model variation in varying change points; spa-
tially varying change points (which are propor-
tions) were modeled as a linear function of
predictors on the logit-scale; (see below). The
spatially varying model parameters were as-
sumed to come from a multivariate normal
(MVN) distribution, where l and R are the
population mean and variance-covariance ma-
trix, respectively. As such, ā, b̄, d̄, /̄ describe the
population-average threshold relationship across
all EDUs, using all data. Prior probabilities on all
parameters were diffuse. We used diffuse normal
priors for ā, b̄, d̄, /̄ and modeled R using the
scaled inverse-Wishart distribution (Gelman and
Hill 2007).

To model the effects of EDU-specific predictors
(mean stream water temperature in this analysis)
on spatially varying parameters of interest, Eq. 4
can be modified as follows:

logðajÞ þ C
logðbjÞ þ C
logðdjÞ þ C

logitð/jÞ

0
BB@

1
CCA ¼

ā
b̄

cd0 þ cd1 3 temperaturej

c/0 þ c/1 3 temperaturej

0
BB@

1
CCA:

ð5Þ

Eq. 5 shows the EDU-specific predictor of
temperature modeling variation in the change in
regression slopes after the change point (d j) and
change points (/ j), but predictors can be applied
to any or all parameters depending on hypoth-
esized spatial dynamics of any given system of
interest. Diffuse normal priors were used for cx.
We ran three parallel Markov chains beginning
each chain with different values. From a total of
150,000 samples from the posterior distribution
the first 100,000 samples of each chain were
discarded then we retained every fourth sample
for a total of 375,000 samples used to characterize
the posterior distributions. We assessed conver-
gence for all parameters both visually (trace plots
and plots of posterior distributions), as well as
with the Brooks-Gelman-Rubin statistic, R̂, with
values ,1.1 indicating convergence. Analyses
were run using JAGS in the rjags package
(Plummer 2013), run from within R (R Core
Team 2014; see Supplement).

As parameterized, the occurrence model does
not account for potentially imperfect detection
when sampling brook trout (MacKenzie et al.
2002). If detection probability is ,1, the effects of

landscape covariates on species occurrence could
be biased (i.e., underestimated; Gu and Swihart
2004). However, range-wide data that would
allow for accounting for imperfect detection do
not exist for brook trout. In addition, the
detection probability for brook trout is high,
ranging from 0.87 (95% credible interval [CRI] ¼
0.79, 0.93) to 0.99 (95% credible interval ¼ 0.98,
1.0; Wagner et al. 2013). However, if appropriate
data exist, this modeling framework could be
extended to an occupancy modeling framework,
where imperfect detection is explicitly incorpo-
rated into the model.

RESULTS

Summary statistics
The number of stream reaches with brook trout

detection/nondetection data within each EDU
ranged from 2 to 872 (mean ¼ 190, standard
deviation [SD] ¼ 231; Fig. 1). A little over half
(51%) of the 7798 stream reaches had brook trout
present. The proportion of agricultural land
cover in the upstream network catchments
ranged from 0 to 0.96 (mean ¼ 0.13, median ¼
0.05, SD ¼ 0.17), and the proportion of urban
land use in the network catchments ranged from
0 to 1.0 (mean ¼ 0.07, median ¼ 0.03, SD¼ 0.11).

Model performance
The predictive performance for both the

agricultural and urban land use models, which
included the EDU-level predictor, was similar.
The models were able to predict brook trout
occurrence much better than chance (agricultural
land use model: mean AUC ¼ 0.79, SD ¼ 0.001;
urban land use model: mean AUC ¼ 0.78, SD ¼
0.001); however, they performed no better than
chance when predicting the validation data set
(agricultural land use model: mean AUC ¼ 0.52,
SD ¼ 0.02; urban land use model: mean AUC ¼
0.51, SD ¼ 0.02).

Spatially varying thresholds
Spatially varying thresholds in brook trout

occurrence were identified for both the propor-
tion of agricultural and urban land use. As
expected, there was, on average, a negative effect
of agricultural and urban land use on brook trout
occurrence with relatively little among-EDU
variation in threshold estimates. The popula-
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tion-average change point (/̄) for proportion of
agricultural land use suggested an abrupt de-
crease in the probability of brook trout occur-
rence when the proportion of agricultural land
use exceeded 0.025 (90% CRI ¼ 0.01, 0.04) in the
network catchment. The change point was
relatively similar across EDUs, with EDU-specific
posterior means (/ j) ranging from 0.02 to 0.05
(Fig. 2). The population-average change point for
the proportion of urban land use in the network
catchment indicated an abrupt decline in the
probability of brook trout occurrence after the
proportion of urban land use in the network
catchment exceeded 0.03 (90% CRI ¼ 0.02, 0.04).
Similar to the findings for agricultural land use,
there was relatively little variation among EDUs
in the urban land use change point, ranging
between 0.02–0.06 among EDUs (Fig. 2). The
estimated change points for both analyses were

well concentrated, lending support for the
existence of a threshold response of brook trout
to both agricultural and urban land use. Al-
though there was not substantial variation
among EDUs in change points, there was
variability in the predicted EDU-specific thresh-
old relationships and associated uncertainty for
both agricultural and urban land use (Figs. 3 and
4).

Modeling spatially varying parameters
To illustrate the ability to model large-scale

variation in threshold model parameters, we
modeled the change point (/ j) and post-thresh-
old change in slope (d j) as a function of EDU
mean stream water temperature. For the agricul-
tural land use model, mean stream water
temperature was not an important predictor of
either parameter (i.e., the 90% credible intervals

Fig. 2. EDU-specific change point estimates (/ j) for brook trout occurrence in relation to proportion of network

agricultural land use (upper panel) and proportion network urban land use (lower panel). Estimates are from

models with no EDU-level predictors. The black dots indicate posterior means, the vertical lines indicate 90%

credible intervals, with the population mean and 90% credible intervals indicated by the solid and dashed

horizontal lines, respectively. EDU numbers correspond to those presented in Fig. 1.
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for the effect of mean stream water temperature

[cd1 and c/1] overlapped zero). The posterior

mean effect of mean stream water temperature

on the EDU-specific agricultural land use change

points was 0.22 (90% CRI¼�0.17, 0.64), and the

effect of mean stream water temperature on the

post-change point change in slope was �0.06
(90% CRI ¼ �0.13, 0.02; Figs. 5 and 6). For the

effect of urban land use, contrary to our

predictions, mean stream water temperature

was positively correlated with the change point

parameter (posterior mean ¼ 0.49, 90% CRI ¼

Fig. 3. EDU-specific threshold relationships (black lines) with 90% credible regions (shaded area) for brook

trout occurrence probability in response to proportion of network catchment agricultural land use. Estimates are

from a model with no EDU-level predictors. EDU numbers correspond to those presented in Fig. 1, and the lower

right panel shows the population level (all data) threshold relationship. Number of observations are in

parentheses.
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0.18, 0.82; Fig. 7), with the proportion of urban

land cover in the network catchment resulting in

an increasing change point as EDU mean stream

water temperature increased (Fig. 8). However,

mean stream water temperature was not an

important predictor of the post-change point

change in slope parameter (posterior mean ¼

�0.05, 90% CRI ¼�0.14, 0.03; Fig. 7).

DISCUSSION

Because processes affecting spatially struc-

tured populations act at multiple spatial scales,

and because these processes are likely to vary

Fig. 4. EDU-specific threshold relationships (black lines) with 90% credible regions (shaded area) for brook

trout occurrence probability in response to proportion of network catchment urban land use. Estimates are from a

model with no EDU-level predictors. EDU numbers correspond to those presented in Fig. 1, and the lower right

panel shows the population level (all data) threshold relationship. Number of observations are in parentheses.
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spatially as a function of region-specific ecolog-

ical characteristics (e.g., climate, geology), there is

a need for methods to quantify and describe

macrosystem variability (Levy et al. 2014). We

described a Bayesian hierarchical threshold mod-

el for investigating large-scale, spatially varying

thresholds in species occurrence that can easily

be extended to accommodate additional state

variables such as abundance and species rich-

ness. Our model is specifically parameterized to

accommodate landscape predictors that are

measured as proportions, such as land use and

land cover, data that are commonly used in

species distribution models.

Brook trout case study

We identified spatially varying thresholds in

brook trout occurrence for both the proportion of

agricultural and urban land use in the upstream

network catchment. Brook trout are a cold-water

fish species native to eastern North America;

however, like many species (Wilcove et al. 1998,

Pimm and Raven 2000), populations are declin-

ing over much of their native range due largely to

habitat degradation and loss. As a result, many

brook trout populations are isolated and restrict-

ed to headwater stream systems (Hudy et al.

2008). Thus, it is not unexpected that we

observed an overall negative relationship be-

tween brook trout occurrence and agricultural

and urban land uses. The estimated change

points for both the proportion agricultural and

urban land uses in the network catchment were

low (0.025 and 0.03, respectively), and values of

Fig. 5. Relationship between EDU-specific change points (logit(/ j); top panel) and post-change point change in

slope (d j; bottom panel) from the network catchment agricultural land use threshold model with EDU mean

stream water temperature. Solid points are posterior means and vertical lines are 90% credible intervals. The thick

black line represents the hierarchical regression line and the grey shading is the 90% credible region. The 90%

credible intervals for the effect of mean stream water temperature in both panels overlapped 0. The lower panel

EDU estimates are displayed geographically in Fig. 6.
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these land uses in the network catchment above
this change point resulted in a steep decline in
brook trout occurrence probability. Wagner et al.
(2013) also found a negative effect of the
proportion of agricultural land use in the
network catchment when evaluating brook trout
occupancy dynamics in Pennsylvania, USA.
Their study found brook trout occupancy was
still .0.20 even when the proportion of network
agricultural land use exceeded 0.70, which, when
looking at EDU-specific estimates, is similar to
our findings. For example, the EDUs in our study
that roughly encompass the study region by
Wagner et al. (2013) are EDUs 28, 40 and 41, all of
which show relatively higher occurrence proba-
bility at high levels of agricultural land use in the
network catchment compared to the population-
average relationship. In addition, our region-
wide change point estimate for the effect of urban
land use matches well with findings by Stranko
et al. (2008), who found that brook trout almost
never occurred in catchments where impervious

land cover exceeded 4%. Wagner et al. (2013) also
found a steep decline in brook trout occupancy as
the percentage of impervious surfaces in the
network catchment increased.

For both landscape thresholds, there was
relatively little spatial variability in change point
estimates. We expect, however, that for some
species, depending on life history characteristics
and associated habitat requirements, and the
nature of local and regional landscape dynamics
and interactions that thresholds may vary sub-
stantially across space (and time). Furthermore,
explicitly accounting for landscape heterogeneity
in our threshold model may improve inference
about local and regional drivers in species
occurrence (Suding and Hobbs 2009). Even with
relatively little spatial variation in change points,
urban change points were positively correlated
with mean stream water temperature. This
positive relationship was opposite to what we
predicted, and may be a result of other local
factors mediating the effects of urban land use on

Fig. 6. EDU-specific changes in slope (d j) estimated from the network catchment agricultural land use model

mapped by EDU. Data here are regressed against EDU mean stream water temperatures in the lower panel of

Fig. 5.
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stream ecosystems. Regardless of the exact

mechanism, the range of change point effect

sizes was small (0.02–0.04), suggesting that

regardless of mean stream water temperature,

small amounts of urban land use in the network

catchment can have deleterious effects on brook

trout occurrence.

The relatively poor ability of both the agricul-

tural and urban land use models to predict

occurrence probability for the validation dataset

was expected. We would not expect that a model

with only a few predictors would have high

predictive abilities over a large spatial extent. The

fact that these models were not able to predict

well at new sites is a result of not being able to

account for other biological and abiotic factors

that interact to ultimately determine brook trout

occurrence in any given stream. Unfortunately,

such detailed ecological databases are often not

available at macroscales (Rüegg et al. 2014).

Regardless of predictive performance, the results

provide useful information to help guide the

conservation and management of brook trout

across their native range (Wagner et al. 2014).

More apparent than the spatial variability in

change points was the difference in parameter

uncertainty among EDUs, as indicated by the

EDU-specific credible regions in Figs. 3 and 4.

This uncertainty was due, in part, to low

numbers of sample sites in some regions while

other regions contained sites with land cover

values spanning only a portion of the range

Fig. 7. Relationship between EDU-specific change points (logit(/ j); top panel) and post-change point change in

slope (d j; bottom panel) from the network catchment urban land use threshold model with EDU mean stream

water temperature. Solid points are posterior means and vertical lines are 90% credible intervals. The thick black

line represents the hierarchical regression line and the grey shading is the 90% credible region. The 90% credible

interval for the effect of mean stream water temperatures on EDU change points (top panel) did not overlap zero

(see text for details) and is displayed geographically in Fig. 8. The 90% credible interval for the effect of mean

stream water temperature on the post-change point change in slope overlapped 0.
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contained in the entire dataset. However, the
ability of our model to be able to estimate change
point parameters in regions with low sample
sizes and with relatively narrow land use values
is a strength of using a hierarchical modeling
approach. These estimates, however, are shrunk
towards the population-average, as a result of
borrowing information from the entire ensemble
of data.

Hierarchical Bayesian threshold modeling
The hierarchical Bayesian approach accommo-

dates the spatially unbalanced sample sizes often
observed in large-scale investigations, as was the
case in our study. Additionally, when the data in
a given region are not adequate to fully describe
a threshold relationship, the hierarchical model-
ing approach uses a common prior distribution
on model parameters that allows regions to share
information, allowing for EDU-specific estimates
even for data poor regions (Gelman and Hill
2007, Qian et al. 2010). This ability to borrow

strength, also referred to as partial pooling, is a
desirable alternative to full pooling, where all
regions are assumed to have the same threshold
model parameters. Partial pooling operates un-
der the assumption that species occurrence to
land use and land cover across large regions is
similar, but not identical.

The ability to model parameters in a hierar-
chical model is particularly important toward
advancing our understanding of large-scale
ecological patterns and processes. In our study,
we evaluated region-specific parameters in the
context of mean stream water temperature;
however, the model framework presents no
limits on which parameters can be measured
against regional environmental gradients and
anthropogenic stressors. Although understand-
ing brook trout occurrence change points in the
context of mean stream water temperatures may
be a specific example, the possibilities are great to
further our understanding of large-scale distri-
butions for a variety of taxa. That said, our model

Fig. 8. EDU-specific changes in change point (/ j) estimates from the network catchment urban land use model

mapped by EDU. Data here are regressed against EDU mean stream water temperatures in the upper panel of

Fig. 7.
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represents a specific type (hypothesis) of ecolog-
ical threshold, and one must choose the appro-
priate form of threshold (Qian 2014) for a give
system of interest.

CONCLUSIONS

Mapping, modeling, and understanding spe-
cies distributions and occurrences is fundamental
to the conservation and management of many
species. Yet species and systems can be more
vulnerable than they appear (Suding and Hobbs
2009), and model choice and change point
estimation can be challenging (Qian and Cuffney
2012). Further constraining such efforts is the fact
that species distributions and dynamics often
respond to conditions that act at various spatial
scales. However, a good deal of information can
be had by extending hierarchical modeling
structures to simultaneously consider multiple
scopes of inference. Ecology at the base level—
such as an individual home range or subpopu-
lation dynamic—remains the building block of
insight, yet appropriate scaling up of habitat
features and environmental drivers through
accurate models holds the promise of inference
at larger scales, even when thresholds and other
complex relationships are present.
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SUPPLEMENTAL MATERIAL

SUPPLEMENT

BUGS code for implementing the hierarchical spatially varying threshold model described in the
text (Ecological Archives http://dx.doi.org/10.1890/ES14-00288.1.sm).
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